SCT3022KL
N-channel SiC power MOSFET

V_{DSS} 1200V
R_{DS(on) (Typ.)} 22mΩ
I_D 95A
P_D 427W

Features

1) Low on-resistance
2) Fast switching speed
3) Fast reverse recovery
4) Easy to parallel
5) Simple to drive
6) Pb-free lead plating; RoHS compliant

Application

- Solar inverters
- DC/DC converters
- Switch mode power supplies
- Induction heating
- Motor drives

Absolute maximum ratings (T_a = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain - Source voltage</td>
<td>V<sub>DSS</sub></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous drain current</td>
<td>I<sub>D<sup>1</sup></sub></td>
<td>95</td>
<td>A</td>
</tr>
<tr>
<td>T<sub>c</sub> = 25°C</td>
<td>I<sub>D<sup>1</sup></sub></td>
<td>67</td>
<td>A</td>
</tr>
<tr>
<td>T<sub>c</sub> = 100°C</td>
<td>I<sub>D<sup>1</sup></sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I<sub>D,pulse<sup>2</sup></sub></td>
<td>237</td>
<td>A</td>
</tr>
<tr>
<td>Gate - Source voltage</td>
<td>V<sub>GSS</sub></td>
<td>-4 to 22</td>
<td>V</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T<sub>j</sub></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Range of storage temperature</td>
<td>T<sub>stg</sub></td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Thermal resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction - case</td>
<td>R_{thJC}</td>
<td>- 0.27 0.35</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Electrical characteristics ($T_a = 25°C$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain - Source breakdown voltage</td>
<td>$V_{(BR)DSS}$</td>
<td>$V_{GS} = 0V, I_D = 1mA$</td>
<td>1200 - -</td>
<td>V</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = 1200V, V_{GS} = 0V$ $T_j = 25°C$ $T_j = 150°C$</td>
<td>- 1 10 -</td>
<td>μA</td>
</tr>
<tr>
<td>Gate - Source leakage current</td>
<td>I_{GSS+}</td>
<td>$V_{GS} = +22V, V_{DS} = 0V$</td>
<td>- - 100</td>
<td>nA</td>
</tr>
<tr>
<td>Gate - Source leakage current</td>
<td>I_{GSS-}</td>
<td>$V_{GS} = -4V, V_{DS} = 0V$</td>
<td>- - -100</td>
<td>nA</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{GS(th)}$</td>
<td>$V_{DS} = 10V, I_D = 18.2mA$</td>
<td>2.7 - 5.6</td>
<td>V</td>
</tr>
<tr>
<td>Static drain - source on - state resistance</td>
<td>$R_{DS(on)}$</td>
<td>$V_{GS} = 18V, I_D = 36A$ $T_j = 25°C$ $T_j = 125°C$</td>
<td>- 22 28.6</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate input resistance</td>
<td>R_G</td>
<td>$f = 1MHz, open drain$</td>
<td>- 4 -</td>
<td>Ω</td>
</tr>
</tbody>
</table>
Electrical characteristics \((T_a = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transconductance</td>
<td>(g_{fs}^{*3})</td>
<td>(V_{DS} = 10V, I_D = 36A)</td>
<td>14.2</td>
<td>S</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{iss})</td>
<td>(V_{GS} = 0V)</td>
<td>2879</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td>(V_{DS} = 800V)</td>
<td>237</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rss})</td>
<td>(f = 1MHz)</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Effective output capacitance,</td>
<td>(C_{o(er)})</td>
<td>(V_{GS} = 0V) (V_{DS} = 0V) (V_{DS} = 600V)</td>
<td>213</td>
<td>pF</td>
</tr>
<tr>
<td>energy related</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn - on delay time</td>
<td>(t_{d(on)}^{*3})</td>
<td>(V_{DD} = 400V, I_D = 18A)</td>
<td>29</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r}^{*3})</td>
<td>(V_{GS} = 18V/0V)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Turn - off delay time</td>
<td>(t_{d(off)}^{*3})</td>
<td>(R_L = 22\Omega)</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f}^{*3})</td>
<td>(R_G = 0\Omega)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Turn - on switching loss</td>
<td>(E_{on}^{*3})</td>
<td>(V_{DD} = 600V, I_D=36A) (V_{GS} = 18V/0V) (R_G = 0\Omega) (L=250\mu H)</td>
<td>632</td>
<td>(\mu J)</td>
</tr>
<tr>
<td>Turn - off switching loss</td>
<td>(E_{off}^{*3})</td>
<td>*(E_{on}) includes diode reverse recovery</td>
<td>243</td>
<td></td>
</tr>
</tbody>
</table>

Gate Charge characteristics \((T_a = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total gate charge</td>
<td>(Q_g^{*3})</td>
<td>(V_{DD} = 600V)</td>
<td>178</td>
<td>nC</td>
</tr>
<tr>
<td>Gate - Source charge</td>
<td>(Q_{gs}^{*3})</td>
<td>(I_D = 36A)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Gate - Drain charge</td>
<td>(Q_{gd}^{*3})</td>
<td>(V_{GS} = 18V)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Gate plateau voltage</td>
<td>(V_{(plateau)})</td>
<td>(V_{DD} = 600V, I_D = 36A)</td>
<td>9.6</td>
<td>V</td>
</tr>
</tbody>
</table>

*1 Limited only by maximum temperature allowed.
*2 \(PW \leq 10\mu s\), Duty cycle \(\leq 1\%
*3 Pulsed
Body diode electrical characteristics (Source-Drain) \((T_a = 25°C)\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse diode continuous, forward current</td>
<td>(I_{S^-1})</td>
<td>(T_c = 25°C)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inverse diode direct current, pulsed</td>
<td>(I_{SM^-2})</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(V_{SD^-3})</td>
<td>(V_{GS} = 0V, I_s = 36A)</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{tr^-3})</td>
<td>(I_{F} = 36A, V_R = 600V) (di/dt = 1100A/\mu s)</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>(Q_{rr^-3})</td>
<td></td>
<td>-</td>
<td>175</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{rrm^-3})</td>
<td></td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>
●Electrical characteristic curves

Fig. 1 Power Dissipation Derating Curve

![Power Dissipation Derating Curve](image1)

- **Power Dissipation** : P_D [W]
- **Junction Temperature** : T_J [°C]

Fig. 2 Maximum Safe Operating Area

![Maximum Safe Operating Area](image2)

- **Drain Current** : I_D [A]
- **Drain - Source Voltage** : V_{DS} [V]
- **Operation in this area is limited by $R_{DS(ON)}$**

Fig. 3 Typical Transient Thermal Resistance vs. Pulse Width

![Transient Thermal Resistance vs. Pulse Width](image3)

- **Transient Thermal Resistance** : R_{th} [K/W]
- **Pulse Width** : P_W [s]
- **Operation in this area is limited by $R_{DS(ON)}$**

$T_a = 25^\circ C$

Single Pulse

$P_W = 100\mu s$

$P_W = 1 ms$

$P_W = 10 ms$

$P_W = 100 ms$
● Electrical characteristic curves

Fig. 4 Typical Output Characteristics (I)

![Diagram](image1)

Drain - Source Voltage: V_{DS} [V]

Drain Current: I_D [A]

Fig. 5 Typical Output Characteristics (II)

![Diagram](image2)

Drain - Source Voltage: V_{DS} [V]

Drain Current: I_D [A]

Fig. 6 $T_a = 150^\circ$C Typical Output Characteristics (I)

![Diagram](image3)

Drain - Source Voltage: V_{DS} [V]

Drain Current: I_D [A]

Fig. 7 $T_a = 150^\circ$C Typical Output Characteristics (II)

![Diagram](image4)

Drain - Source Voltage: V_{DS} [V]

Drain Current: I_D [A]
Electrical characteristic curves

Fig. 8 Typical Transfer Characteristics (I)

Fig. 9 Typical Transfer Characteristics (II)

Fig. 10 Gate Threshold Voltage vs. Junction Temperature

Fig. 11 Transconductance vs. Drain Current
Electrical characteristic curves

Fig. 12 Static Drain - Source On - State Resistance vs. Gate - Source Voltage

Fig. 13 Static Drain - Source On - State Resistance vs. Junction Temperature

Fig. 14 Static Drain - Source On - State Resistance vs. Drain Current

- Graphs show the relationship between various parameters such as gate-source voltage, junction temperature, and drain current.
- Key data points and conditions are highlighted on each graph.

www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
2016.06 - Rev.A
● Electrical characteristic curves

Fig. 15 Typical Capacitance vs. Drain - Source Voltage

- Capacitance: $C \text{ [pF]}$
- Drain - Source Voltage: $V_{DS} \text{ [V]}$

![Capacitance graph](image)

Fig. 16 Coss Stored Energy

- Coss Stored Energy: $E_{Coss} \text{ [μJ]}$
- Drain - Source Voltage: $V_{DS} \text{ [V]}$

![Coss Stored Energy graph](image)

Fig. 17 Switching Characteristics

- Switching Time: $t \text{ [ns]}$
- Drain Current: $I_D \text{ [A]}$

![Switching Characteristics graph](image)

Fig. 18 Dynamic Input Characteristics

- Total Gate Charge: $Q_g \text{ [nC]}$
- Gate - Source Voltage: $V_{GS} \text{ [V]}$

![Dynamic Input Characteristics graph](image)
Electrical characteristic curves

Fig.19 Typical Switching Loss vs. Drain - Source Voltage

- $T_a = 25^\circ C$
- $I_D = 36A$
- $V_{GS} = 18V/0V$
- $R_G = 0\Omega$
- $L = 250\mu H$

- E_{on}
- E_{off}

<table>
<thead>
<tr>
<th>V_{DS} [V]</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [mJ]</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
</tr>
</tbody>
</table>

Fig.20 Typical Switching Loss vs. Drain Current

- $T_a = 25^\circ C$
- $V_{DD} = 600V$
- $V_{GS} = 18V/0V$
- $R_G = 0\Omega$
- $L = 250\mu H$

- E_{on}
- E_{off}

<table>
<thead>
<tr>
<th>I_D [A]</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [mJ]</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
</tbody>
</table>

Fig.21 Typical Switching Loss vs. External Gate Resistance

- $T_a = 25^\circ C$
- $V_{DD} = 600V$
- $I_D = 36A$
- $V_{GS} = 18V/0V$
- $L = 250\mu H$

- E_{on}
- E_{off}

<table>
<thead>
<tr>
<th>R_G [Ω]</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [mJ]</td>
<td>0</td>
<td>800</td>
<td>1600</td>
<td>2400</td>
<td>3200</td>
<td>4000</td>
<td>4800</td>
</tr>
</tbody>
</table>

Drain - Source Voltage : V_{DS} [V]

Drain Current : I_D [A]

External Gate Resistance : R_G [Ω]
- Electrical characteristic curves

Fig. 22 Inverse Diode Forward Current vs. Source-Drain Voltage

- Inverse Diode Forward Current: I_s [A]
- Source-Drain Voltage: V_{SD} [V]

Fig. 23 Reverse Recovery Time vs. Inverse Diode Forward Current

- Reverse Recovery Time: t_{rr} [ns]
- Inverse Diode Forward Current: I_s [A]
● Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

![Switching Time Measurement Circuit](image1)

Fig.1-2 Switching Waveforms

![Switching Waveforms](image2)

Fig.2-1 Gate Charge Measurement Circuit

![Gate Charge Measurement Circuit](image3)

Fig.2-2 Gate Charge Waveform

![Gate Charge Waveform](image4)

Fig.3-1 Switching Energy Measurement Circuit

![Switching Energy Measurement Circuit](image5)

Fig.3-2 Switching Waveforms

![Switching Waveforms](image6)

Fig.4-1 Reverse Recovery Time Measurement Circuit

![Reverse Recovery Time Measurement Circuit](image7)

Fig.4-2 Reverse Recovery Waveform

![Reverse Recovery Waveform](image8)
Dimensions

TO-247N

UNIT: mm
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Notice

Notes

1) The information contained herein is subject to change without notice.

2) Before you use our Products, please contact our sales representative and verify the latest specifications:

3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our products beyond the rating specified by ROHM.

4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.

6) The Products specified in this document are not designed to be radiation tolerant.

7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.

8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.

9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.

10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.

11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.

12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.

13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.